请问哪里可以获得食电菌的菌种购买

一些微生物已经进化出了终极的節食方法它们不需要摄取食物或氧气,只需要依靠电能便可以存活

这些微生物通常生活在泥泞的海床或河岸边。找到它们是很容易的:生物学家只需向沉积物中插入一根电极便能将它们引诱出来。最靠近电极的细菌身体上甚至会长出类似电线的结构这样其它距离较遠的微生物也可以与电源相连了。从效果上来说这些细菌犹如活生生的输电网。

并且我们似乎都能从这种微生物输电网中获益。它能夠有效地解决有毒废料和其它环境污染问题

以电为食的微生物听上去像是科幻小说中的玩意儿,但事实上它们的行为表现并不像乍看起来那样异想天开。

包括人类在内地球上的任何生命只要想存活下去,都必须对能量加以利用这种能量以电子的形式存在,也就是那些会产生电流的、带负电荷的微小粒子

和地球上大部分生命体一样,人类主要从食物所含的糖分中摄取所需的电子人体细胞中发生的┅系列化学反应会释放电子,电子最终会流入氧气中而这些氧气正是我们吸进肺中的氧气。电子的这一流动过程便是人体的能量来源

這意味着,所有生物都面临着相同的挑战无论是单细胞的细菌还是一头蓝鲸,都必须找到电子源还有体内释放电子、形成回路的场所。

但如果没有氧气来释放电子会发生什么事情呢?

有许多生物居住在低氧环境中因此它们必须找到别的途径来释放电子。一些生物采鼡的方法是呼吸“金属”而不是氧气。

1987年德里克·拉弗利(Derek Lovley)和他在马萨诸塞州立大学的实验室在华盛顿附近的波托马克河岸上第一次意外发现了这样的细菌。

这些细菌名叫硫还原泥土杆菌(Geobacter metallireducens)它们从有机化合物中获取电子,然后将电子转移到铁氧化物中换句话说,它们吃嘚是垃圾(包括乙醇在内)“呼吸”的是金属,而非氧气

当然了,这种“呼吸”和我们平时所说的大不相同首先,细菌没有肺因此它們会将电子转移到细胞外面的金属氧化物中。

它们是通过细胞表面伸出的一种特殊的、头发一般的细丝来实现这一点的这些细丝和铜制電线的作用类似,都可以导电因此它们被称作“微生物纳米电线”。

硫还原泥土杆菌可以利用大部分生物完全无法利用的能量来源它們甚至能有效地“吃掉”污染物。它们能够将泄露的石油中的有机化合物转化为二氧化碳或将钚和铀之类的可溶放射性金属转化为不可溶的形式,减小它们对地下水的危害并在这一过程中产生电能。

事实上有些人甚至认为,将来我们可以用海藻、尿液、污水等废料为智能手机等微生物燃料电池设备供电用这些原料作为微生物的唯一食物来源。这可以说是可循环能源的终极发展目标

1988年,在拉弗利发現了这种细菌一年之后南加州大学的微生物学家肯尼斯?尼尔森(Kenneth Nealson)发现了第二种会排出电子的细菌。

他当时正在研究纽约州奥奈达湖中的一種奇特现象奥奈达湖中含有锰,会和空气中的氧气发生反应形成氧化锰。然而尼尔森发现的氧化锰并没有他预期中那么多,有一部汾似乎消失了最后他发现,罪魁祸首是希瓦氏菌(Shewanella oneidensis)

这种细菌在富氧环境中会呼吸氧气,但在泥泞的湖岸上氧气十分稀少,因此它们会矗接将电子转移到氧化锰中通过这种方法产生电流。遇到铁等其它金属时它们也会利用这种方法。

这些细菌究竟是如何做到这一点的长时间以来一直是未解之谜,答案直到不久前才被揭开

在显微镜下观察时,希瓦氏菌的外膜似乎有一些长长的、像头发一样的延伸物一开始,人们认为这些细丝就像铜线一样是用来导电的,作用和硫还原泥土杆菌差不多但后来人们发现,这些长长的细丝只有在实驗室中做了脱水处理之后才具有导电功能。

和硫还原泥土杆菌不同希瓦氏菌似乎是用一种叫做黄素类分子(flavins)的运输分子和外膜中一种叫莋细胞色素(cytochromes)的蛋白质将电子转移到细胞外面的。

目前为止本文仅仅讨论了在呼吸时会产生电流的细菌。但研究人员发现的能够排出电子嘚微生物还不止这些

大多数生物会从碳水化合物中获取电子,而有些细菌可以“吃掉”矿物和岩石中的电子就像直接从“插座”中摄取电能一样

尼尔森手下的一名研究生安妮特·罗威(Annette Rowe)在海床上发现了六种仅靠电能便可生存的细菌这六种细菌之间彼此大不相同,并且沒有一种与硫还原泥土杆菌和希瓦氏菌有任何相似之处

罗威从加州海岸边的卡特里娜港的海床上提取了一些沉淀物样本,将它们带回实驗室然后向其中插入电极。然后她对电极的电压进行了调整观察沉积物中的细菌是会“食用”电极上释放的电子,还是会向电极上排放电子

她发现,当没有其它“食物”来源时这些细菌会欣然接受来自电极的电子。但在自然界中这些细菌则会直接从海床中的铁和硫中获取电子。

人们后来又发现了更多喜爱以电子为食的细菌事实上,如果你把一根电极插进地里让它传输电子,不久这根电极上就會聚满了前来“觅食”的细菌实验显示,这些细菌要么是在“食用”电子要么就是在排出电子。

科学家希望能发现一种既能“食用”電子、又能排出电子的细菌并且仅靠电能、不需其它任何能量便能存活。

拉弗利表示科学家已经找到了这样的细菌。硫泥土还原杆菌Φ的部分菌种购买就可以直接将电子转移到电极上还能直接从电极上接受电子。

2015年我们发现食电和放电微生物实际上可以联起手来,茬彼此之间传递电子组成一张生活中常见的输电网。

海底的甲烷储量极为丰富这些甲烷是微生物在食用藻类和动物的尸体时释放出来嘚。如果甲烷逃逸到了大气中就会导致温室效应加剧。还好有一种类型的细菌能够控制住这一局面。

不同的细菌或古细菌(远古时期的單细胞微生物在许多方面与细菌十分相似)能够达成合作,在甲烷到达海面之前就将其降解

马克斯?普朗克海洋微生物研究所的冈特?韦格納(Gunter Wegener)很好奇这一过程是如何实现的。他收集了一些细菌的样本(它们生活在60摄氏度的海底)然后将它们放在扫描电子显微镜下面观察。

在显微鏡下可以看到这些细菌的细胞中伸出了一些类似电线的结果。虽然这些细线只有几纳米宽但长度却足足有几微米,比细胞本身的直径還要长许多细菌似乎正是利用了这些纳米“电线”,将自己与古细菌联结在一起

这些古细菌以甲烷中的电子为食,将甲烷氧化成碳酸鹽然后通过纳米“电线”,将这些电子转移给其它细菌最终,这些细菌会将电子排放到硫酸盐上并在这一过程中产生细胞所需的能量。

研究人员已经找到了为这些纳米“电线”编码的基因只有当甲烷被添加到细菌的能量来源中时,这些基因才会被开启在细菌和古細菌之间形成纳米“电线”。

这两种微生物之间的合作方式早在数十亿年前就已经初步形成了那时地球的大气中还没有氧气。

“在这一領域中最有趣的进展之一便是‘电子会直接在物种间进行转移’这一概念。”拉弗利说道“微生物会和彼此联结在一起,共享电子產生自己无法进行的化学反应。”

拉弗利和他的实验室还发现了其它可以直接将电子转移给对方的细菌种购买群

在实验室中,拉弗利发現硫泥土还原杆菌的两种菌种购买——G. metallireducens和G. sulfurreducens可以通过可导电的纳米“电线”网相依为命G. metallireducens可以从乙醇中获取电子,然后通过输电网直接将电孓转移给G. sulfurreducens

在更加极端的情况下,一些细菌还能连接起来形成长长的“电缆”。

“电缆细菌”生活在氧气稀少的海床或河床中由于没囿氧气,它们产生的电子也就无处可去为了解决这一问题,电缆细菌会与彼此相连形成一根长长的链条。这样的链条中含有数百个细胞长度可达几厘米,直到它们找到氧气为止考虑到每个细菌直径只有3、4微米,这已经算是一段很长的距离了

链条中的头一个细菌生活在缺氧环境中,负责从硫化物中获取电子并将其传递给下一个细菌,然后这个细菌再将电子传递给下一个细菌直到电子被排放到氧氣中为止。

这意味着原本生活在缺氧的海床中的细菌可以通过“手拉手”的方式获取氧气。这些细菌通过表面的脊状结构相连或许它們正是利用这一结构在彼此之间传递电子的。

其它细菌则主要依靠岩石和矿物质来完成吞食和排放电子的任务

有些细菌会附着导电金属仩,如含铁丰富的磁铁矿等利用磁铁在彼此之间传递电子。科学家认为磁铁可以形成一根链条,将放电细菌和食电细菌联结在一起

這些细菌生存的环境看上去或许超出了我们的想象,但这些可以“食用”电子和可以“呼吸”金属的细菌本身却要常见得多

例如,在将啤酒废料转化为甲烷的沼气池中人们就曾发现过这样的细菌。在一个沼气池中硫泥土还原杆菌能够直接将电子转移给另一种名叫Methanosaeta harundinacea的细菌,后者随后再将电子转移到二氧化碳中去

人类的内脏中甚至也可能有这些微生物,与内脏细胞之间产生电子反应

但问题是,细菌为什么会演化出这种能力呢

当能源和食物匮乏时(这在海床或深深的地下是很常见的),仅靠电子生存可以说是一种十分机智的解决方法这種方法提供的能量不多,不足以让生物继续生长或竞争但足够让它们生存下来,苟活于世

如果火星或欧罗巴(木星的卫星)等外星球上存茬生命的话,它们面临的也许就是这样贫瘠的环境太空生物学家在寻找地外生命的迹象时,也许会对这些食电细菌和放电细菌大感兴趣

不管我们能否找到这样的外星生命,地球上的食电和放电细菌仍是一个重大的发现我们只需要为它们提供一根电极,让它们有电子可“吸”它们就可以从有毒废料、溢油和核废料中获取电子了,既清理了我们产生的废料又在这一过程中产生了电能。

对于单细胞生物來说这已经相当厉害了。

"加关注每日最新的手机、电脑、汽车、智能硬件信息可以让你一手全掌握。推荐关注!【

微信扫描下图可直接关注

时间: 来源:互联网 阅读量:563

传統栽培食用菌产量低出菇慢,商品率低一个更重要的因素,是栽培原料配方不合理营养失衡,没有按照不同食用菌生长营养需求配方氮、磷、钾、碳、氨比失衡,微量生长原素失衡易致食用菌菌体、菌丝生长的营养不良,所以传统产量低下我想学食用菌种购买植技术菌种购买培育技术哪里可以学?而中心专家根据长期的食用菌生长营养需求规律采用计算机模拟生长营养需求,利用定量定义分析配比秸秆粪便及其有机、无机肥料,本着一不多加二不少加的原则精准定位,使食用菌稳产增产更为明显

我想学食用菌种购买植技术菌种购买培育技术哪里可以学?交活性菌种购买的培养和常规菌种购买模拟太空环境改良的技术创新

有机更高产:要想提高产量菌種购买是首选,没有好菌种购买怎能出好菇?杂交活性菌种购买通过模拟太空环境改良技术的突破,同时也更带来了选育杂交纯正高产菌种购买的创新,优菌派蘑菇种植中心培育的“中科5号”杂交活性菌种购买如平菇、姬菇、香菇,双孢菇鸡腿菇、金针菇等,不但有機稳产高产而且生长成熟期比常规时间缩短30%。产量比常规品种均要提高50%以上例如利用秸秆微工厂化栽培平菇,1斤秸秆可出2-3斤菇产量昰常规栽培的1-2倍。优菌派蘑菇种植中心生长整齐规律商品率提高25%以上。

耐候抗病强:这种新型活性菌种购买能够适应自然界高、中、低氣温能力特别强四季可栽培,抗病虫能力强更适合简易的床架式或箱式立体多层栽培的微工厂化生产。

出菇快受益长:优菌派蘑菇种植的平菇从栽培到上市等食用菌最短期只需20-30天一次种植,可连续采收70-80天5-6茬的鲜菇;香菇发菌传统发菌至出菇需120-150天而中科5 号香菇活性菌种購买从发菌到出菇仅需50-60天,一次种植可连续采收90-120天出菇6-7茬,柄短粗且肉厚花菇多一年两次生产,全年受益

普通菌种购买改良:对客戶使用的地方菌种购买进行模拟太空环境的技术处理后,也可达到高产稳产的效果对所有客户进行该技术的品种改良处理培训。

我想学喰用菌种购买植技术菌种购买培育技术哪里可以学由于选用优菌派蘑菇种植中心优良的“中盛5号”系列杂交新菌种购买,客户无需自已培养栽培用菌种购买只需按照优菌派蘑菇种植公司成熟地模式化(傻瓜式)栽培管理流程进行食用菌栽培管理,就像农民在地里种萝卜白菜┅样简单易学在优菌派蘑菇种植公司培训一天即可掌握全套食用菌栽培技术和管理流程及相关设备的傻瓜式操作。

(一)可用于食品的益生菌菌种購买名单

2.动物双歧杆菌(乳双歧杆菌)

4.德氏乳杆菌保加利亚亚种(保加利亚乳杆菌)

(二)可用于保健食品的益生菌菌种购买名单

8.干酪乳杆菌干酪亚种

(三)可用于婴幼儿食品的菌种购买名单(括号内为菌株号)

动物双歧杆菌(Bb-12)

短双歧杆菌 (M-16V)

*仅限用于1岁以上幼儿食品

我要回帖

更多关于 益生菌菌种 的文章

 

随机推荐